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J. Phys. A: Math. Gen. 22 (1989) L237-L242. Printed in the UK 

LETTER TO THE EDITOR 

On the icosahedral equation and the locus of zeros for the 
grand partition function of the hard-hexagon model 

G S Joyce 
Wheatstone Physics Laboratory, King’s College, Strand, London WCZR 2LS, UK 

Received 11 January 1989 

Abstract. The Kleinian theory of the icosahedral equation is used to investigate a recent 
conjecture on the locus of zeros for the grand partition function of the hard-hexagon lattice 
gas model. 

Baxter (1980, 1981) has shown that in the thermodynamic limit the grand partition 
function per site E of the hard-hexagon lattice gas model has a parametric representa- 
tion in the ordered regime given by 

z-’ = x [ H ( x ) / G ( x ) I 5  (2) 

where z is the activity of the gas, and 

and 0 < x < 1 .  When x + 1- the model displays an order-disorder transition with a 
critical activity value 

z, = [f( 1 +J5)]’. (5) 
Similar results were also obtained by Baxter for the disordered regime 0 S z < z , .  

Recently, Joyce (1988) has used the theory of modular functions to eliminate the 
non-physical parameter x from equations (1) and (2). It was found that the grand 
partition function is an algebraic function E( z ’ )  of the reciprocal activity z’ = z-l which 
satisfies the polynomial equation 

(~‘)~fl :O(z’)y~-  L!~(z’)[ 1458z’fl:(z’) + fl:(z’)]y3 

-3’0[2430~’fl~(~’)+fl:(~’)]y2-319f13(~’)y -3”=0 ( 6 )  

(7) 

(8) 

(9) 

where 
-6 y = =  

.n,(z’) = 1 - 11z’-(z’)2 

&(z’)= 1-5222‘- 1 0 0 0 5 ( ~ ’ ) ~ -  10 0 0 5 ( ~ ’ ) ~ + 5 5 2 2 ( ~ ’ ) ~ + ( ~ ’ ) ~ .  
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Wood et a1 (1989) have investigated the resolvent properties of the polynomial equation 
(6) and have conjectured that part of the limiting locus of grand partition function 
zeros in the z plane for the hard-hexagon model can be generated by considering the 
solutions z = z(  w )  of the rational algebraic equation 

w = z‘fl:(z’)/R:(Zl) (10) 
where w is a real parameter. 

The main purpose in this letter is to investigate the mathematical properties of the 
solutions z = z (  w )  of equation (10). In particular, it will be shown that the algebraic 
curves generated by the solutions z = z (  w )  have simple rational parametric representa- 
tions. We begin the analysis by considering the following basic modular functions 
(Klein and Fricke 1890, p 154, 1892, p 383): 

m 

5 ( ~ ) = ( 1 7 2 8 x ) - ’  1 f 2 4 0  n3xn(l-xn)-’ n ( l - ~ “ ) - ~ ~  ( 1 1 )  

5 ( ~ )  = x”’H(x)/G(x)  (12) 

x = exp(2.rri.r) (13) 

[ n = l  l 3  
where 

and the variable T lies in the upper half-plane Im(7) > 0. The function J(T) is the 
fundamental hauptmodul for the full modular group r, and 5 ( ~ )  is the hauptmodul 
for the principal congruence subgroup r(5) .  Because the function J(T) is a modular 
invariant for all the transformations belonging to r(5) it is possible to write J(T) as a 
rational function of L(T). In fact Klein and Fricke (1890, p 105) have proved that this 
rational relation can be expressed in the two equivalent forms: 

17285 = fl:(5’)/5’fl:(5’) 

1728(J- 1 )  =fl:(15)/5’fl:(t5) 
where 

a,( 5’) = 1 +22815 + 4945’’ - 2285’’ + 12’ (16) 

and the polynomials fll and f13 are defined in equations (8) and (9) respectively. 
Equation (14) defines an algebraic inverse function 5 ( J )  which consists of 60 

function elements, and has a Galois group which is isomorphic with the icosahedral 
rotation group (Klein 1913). It is also known that the zeros of the polynomials fl,(15) 
( j  = 1,2,3)  are closely connected with the geometrical properties of the icosahedron. 
Because of these remarkable properties equations (14) and (15) are, not surprisingly, 
referred to as the icosahedral equations. If we now make the identifications 

(17)  z l  = z-‘ 5 5  

wP1 1728(J - 1 )  (18) 

we see that the basic equation (10) becomes the icosahedral equation (15 )  with 5 real. 
Unfortunately, the icosahedral equation (15 )  is not solvable in terms of radicals 

because the Galois group for the equation is simple. However, it is possible to express 
the inverse function l ( 5 )  in terms of hypergeometric series by using the work of 
Schwarz (1873). In this manner we find that one solution of the equation is 

~ ‘ ( 5 )  = (12)-3’5 S ~ ~ ( J ) I J I - ” ~ F ~ / F ,  (19) 
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where 

and 1 s IJI < CO, with J real. The application of the transformation formula (ErdClyi 
et a1 1953, p 105) 

,F,(a,b; c; ~ ) = ( l - z ) - ~ ~ F ~ [ a , c - b ;  c ; z / ( z - l ) ]  (22) 

l o ( J )  = (12)-3’5 sgn(J- 1)lJ-  11-’/’F3/F4 (23) 

~ 3 = 2 ~ 1 ( - & , 3 ; $ ;  I / ( I - J ) )  (24) 

~ 4 = 2 ~ 1 ( - & , 2 ;  4;  I / ( I - J ) )  (25) 

to equation (19) yields the alternative expression 

where 

and -m<JsO or J > 2 .  It is clear that equation (23) is particularly useful for the 
case J S 0. 

We can determine the behaviour of l o ( J )  in the neighbourhood of the branch point 
J = 1 by applying standard analytic continuation formulae (ErdClyi et a1 1953, pp 105, 
108) to equation (19). The final result is 

l o ( J )  = A1[Fs - A2(J - l)’/’F6]/[F5+A3(J - 1)’l2F6] (26) 

where 

A, = 2-23-’/25-3/4[-(1 + J 5 )  +J2(5+J5)1’2] (31) 

and 1 s J s 2. A similar procedure can be used to establish the behaviour of l o ( J )  in 
the neighbourhood of the branch point J = O .  It is found that 

[ O ( J )  = -A4[F7+A5 sgn(J)IJ1’’3Fpl/[F7-A6 sgn(J)IJ11/3F81 (32) 

where 

A, = 2-35-5/6[(3+~5) +J6(5+J5)’”]  (36) 

A6=2-35-5/6[-(3+J5)+J6(5+J5)1/2] (37) 

and - 1 G J <  1. Finally, we note that the behaviour of the solution (32) in the 
neighbourhood of J = 1 is given by the formula 

fb(J)  = -A,[F,-A,(l -J)’/2F,]/[F5+Ag(l -J)’/’F,] (38) 
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where 
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A7 = 2- ’ [  ( 1  - 45) + J 2 (  5 - J5)”’] ( 3 9 )  

Ag=2-23-1 /25-3 /4[ - (1  -J5) + J 2 ( 5  - J5 ) ’ ” ]  ( 4 0 )  

A, = 2-23-1/25-3/4[(  1 -J5)  + J 2 ( 5  -J5)’/’1 ( 4 1 )  

and 0 s  J < 1. We have now constructed one real root co(J )  of the icosahedral equation 
for each real value of J. It should be pointed out, however, that the various formulae 
given for l o ( J )  do not all represent the same brunch of the algebraic function c ( J ) .  

Klein (1922)  has shown that if we have found one root eo = l o ( J )  of the icosahedral 
equation then all the other roots of the equation can be expressed as fractional linear 
transformations of lo. The detailed results are 

= [ ( E  + c4)e0+ eV] 
lo - E ” ( E  + E ~ )  

lo- & ” ( E  + e4) 

( E  + E ~ )  eo + E 1 = -&I *  ( 4 5 )  

where 

E = exp(2ri/5) ( 4 6 )  

p, v = 0 , 1 , 2 , 3 , 4  and lo = c o ( J ) .  From these formulae we can now readily derive the 
following explicit expressions for the 12 roots z = z ( J )  of the basic equation ( 1 0 )  with 
J real: 

~ ~ , + ~ = - 1 / z ~ , ~ ~ ,  z 2 = 1 0 5 ,  z 3 = - 1 / z 2 ,  and z5=-1/z4, where m = l , 2  and 
lo = c 0 ( J )  is the real root of the icosahedral equation. If the complex roots zo,* , (J )  
and z , , + , ( J )  are plotted for real values of J in the z plane one obtains a locus which 
is a complicated closed curve C , .  In a similar manner it is found that the complex 
roots Z ~ , = ~ ( J )  and z,,, ’(J) lie on a different closed curve C2. 

It is possible to consider lo to be a parameter for the plane curves C ,  and C2 
because for real J the function c o ( J )  has real values in the interval 

-f[( 1 -J5) + J 2 ( 5  - J5)’/2] < l o ( J )  f[ -( 1 +J5) + J 2 ( 5  + J5)’/’1. 
( 4 8 )  

We see, therefore, from equation ( 4 7 )  that the closed curves C,  and C2 can each be 
described in a piecewise manner by four rational parametric representations. A 
simplification of this result can be achieved by formally allowing the parameter eo to 
have any real value. In this manner we find that the curve C,  has the single parametric 
representation 
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where -CO < lo < CO. For the curve C2 we have the single representation 

where -CO < lo < CO. It is clear from equations (49) and (50)  that the curves C, and 
C2 are both rational curves. 

The cardioid drawn by Wood et a1 (1989) is part of the curve C, and has the 
representation (49) with the parameter lo in the intervals 

-$[-(3 +J5) + J6(5 +J5)’”] s 0 ( 5 1 )  

f(d5 - 1 )  S C o s  $ [ ( 3  -J5) +J6(5 -d5)’”]. (52 )  

The other curve considered by Wood et a1 (1989) is part of C2 and has the representation 
(50)  with the parameter lo in the intervals 

-f(J5+ 1)s 50s -$ [ - (3  -J5)+J6(5-J5)’”] 

-$[ - (3  +J5) +J6(5 + d5)’”] G 60s 0. 

( 5 3 )  

(54) 

It is interesting to note that the points where the curves C, and C, cross the real x 
axis are associated with parameter values lo which are zeros of the icosahedral 
polynomials 15f11(15), f12(15) and fl,(15). One can also show that the positions of 
these crossing points are expressible in terms of the real zeros of the polynomials 
flj(15) ( j  = 1 , 2 , 3 ) .  For example, the cardioid drawn by Wood et a1 (1989) crosses the 
negative x axis at 

( 5 5 )  

12=$[(3 -J5)+d6(5 -d5)’”] (56)  

5 x = - l z  
where 

is one of the zeros of the polynomial f12(15). 
It can be shown by equating the imaginary part of equation (14) to zero that the 

Cartesian coordinates x = x(lo) and y = y ( l o )  for both curves C, and C2 satisfy a single 
polynomial equation of the type 

I O  20-2n 

P ( x ,  y )  = c,,xmyZfl = 0 ( 5 7 )  
n=O m=O 

where c,, are non-zero integers. From the parametric equations (49) and (50)  one 
would expect that this equation is reducible to two independent polynomial equations 
P , ( x ,  y )  = 0 and P2(x, y )  = 0 which are satisfied separately by the curves C,  and C2. 
These reduced equations will have coefficients which involve irrational numbers such 
as J5. 

I am extremely grateful to Dr D W Wood for helpful correspondence and several 
stimulating discussions on algebraic geometry. I also thank Dr I J Zucker for his 
expert and generous assistance in the derivation of certain identities involving products 
of gamma functions. These identities were used to determine the constants 
A I ,  A 2 ,  . . . , A, in equations (26) ,  ( 3 2 )  and (38 ) .  Finally, I am grateful to Dr J L Martin 
for his interest in the work, and to Paul Lee for help with computer graphics. 
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